Heavy-tailed targets and (ab)normal asymptotics in diffusive motion

Piotr Garbaczewski (Opole, Poland)

Heavy-tailed asymptotics of pdfs induced by:

- Langevin equation with additive Lévy noise

- Lévy-Schrodinger semigroups (symmetric stable driver)

- diffusion-type processes (Wiener noise response to
specific logarithmic potentials)

Issues addressed:

differences/affinites in dynamical behavior

common asymptotic stationary probability densities
confinement (pdf has a finite number of moments)
hyper-confinement (all moments in existence)

(ab)normal (heavy-tailed) thermalization in Brownian motion
transient diffusion: gaussian into heavy-tailed pdf




Contexts:

Mathematics and mathematical physics: hypercontractive, intrinsically
ultracontractive etc. semigroups, spectral properties of generators
(and generalized Hamiltonians), various inequalities and eigenvalue plus
eigenfunction estimates: lowest eigenvalue and the ground state

polymer physics: topologically-induced ,superdiffusions” and the likes

random search problem (like e.g. animal foraging), Levy flights in
inhomogeneous media; incompete knowledge of search targets

computer-assisted issues: various versions of truncated Levy flights,
cut-offs removal, convergence in law

optical lattices: transient diffusive dynamics (heavy- tailed asymptotics
in Brownian motion), logarithmic potentials and ,cooling forces”



»Rough” guide I. fractional semigroups

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 40, NUMBER 2 FEBRUARY 19949
Cauchy noise and affiliated stochastic processes (PG.+RO.)
Note ! FI — _DA LY E—— ﬁfﬂ — }hlﬂlﬂfl_'_u'}
exp(—tH) =1
te [0,T]
(cf. ,ill - posed problems”)
d,0,=—|Vio,—Vve,, (21)

where V" 1s a measurable function such that:

(a) forall xeR, V(x)=0,

(b) for each compact set KCR there exists Cy such that for all xe K, V is locally bounded

V(I)EE.:.CK.



Lemma 5: 1f 1=r= p=o and >0, then the operators T/ defined by

- [ v )ds”

are bounded from L'(R) into LP(R). Moreover, for each re[l,=] and f=L"(R), Tff 15 a
bounded and continuous function.

(T/f )(x) =Ef=f(Xﬁexp

Lemma 7: For any pe[1,=] anElle LP(R) there holds

TH= | Hapsmdy,

where k/(x,y)=0 almost everywhere

Lemma 8: k{ (x,y) is jointly continuous in (x.y).

Lemma 9: k| (x,y) is strictly positive.




90,=—|V|0,—V8,,  3,0=|V|6+Ve

let py(x) and p4(x) be strictly t€ [0,T]

positive densities. Then, the Markov process X| characterized by the transition probability den-
sIty:

0(x,t)
A y,s)

priyv.sx.)=kl (x,y) (23)

and the density of distributions
plx,t)=0,(x,0)8(x,1),

where

04 (x,1)= Lkﬁx}_ﬂf{y}ﬂ’_ﬂ 04(y,1)= Lﬂ-;tr*}*)g(ﬂdx

is precisely that interpolating Markov process to which Theorem 1 extends its validity, when the
perturbed semigroup kernel replaces the Cauchy kernel.

Clearly, for all 0=s=¢=T we have

Aelx,t)= fﬁk:';sfx}_v}ﬂ*{yﬁs}d}r} My.s)= f ﬁ: Jdx,y)@ix,t)dx (24)



ANALYTIC PROPERTIES OF FRACTIONAL SCHRODINGER SEMIGROUPS
AND GIBBS MEASURES FOR SYMMETRIC STABLE PROCESSES

KAMIL KALETA amp JOZSEF LORINCZI

arXiv:1011.2713v1 [math.PR] 11 Nov 2010

Definition 3.2 (Fractional Schrodinger operator for bounded potential). If V & L""{R‘ij

we call
(3.1) Ha:=(-A)*24V, D<ca<?

fractional Schrodinger operafor with potential V. We call the one-parameter operator setmgroup
{E_"H" 2> 0} fractional Sehridinger semigroup.

Theorem 3.1. (Functional integral representation) Lot 17 L"“[Fld;l_. and f.q € LE{Rd}. We
have

(3:2) (e (8 ¥g) = [ acw® [Faarxage V0]
Rd



Note: fractional Kato class

ax < d yiy—x) = }[ﬂ plt,y —x)dt = Agoly — =%, =zyeRY Ady = 277 420((d — ) /2)|T(/2)| !
Ma(z) = — log —
o> d o=d=1 (x) = et o
a>d=1 Ma(r) = () cos{wa/2)) z|* !, reR®

Definition 3.1. (Fractional Kato-class) We say that the Borel function 1V : R? - R belongs
to the fractional Kato-class K% 1f V' satisfies either of the two equivalent conditions

lim '-:|1pf |V ({w) gy — x)|dy = 0,
:—:-I]_EEE y—z|<e

]Jm Eupf [ Fe|V])(x)ds = 0.

0 repd
We wnte V7 € K if V1g € K for every ball B C R?. Moreover, we say that V is a fractional
Kuato-decomposzsable pofenticl whenever
V=Vy-V_ with V_ k™ Vi k..

where Vi and V_ denote the positive and negative parts of V', respectively.



Fractional Schrodinger operator and its Feynman-Kac semigroup

Example 3.1. Some examples and counterexamples of Kato-potentials are as follows.

(1) Locally bounded potentials: Let V € L= (R®). Then for all & € (0,2) we have V € K2 and
V i8 Kato-decomposable,
(2) Locally integrable potentials: Let o € (0,2). Then K2 L1 _(R9).

Mext we state and prove the existence and basic properties of the kernel for the semigroup
{T;:t =0}

Theorem 3.3. Let V' be a Kafo-decomposable potentinl. The following properties hold:

(1) for every fized t > 0 the operator T; has a bounded iniegral kernel u(t,z,y), t.e. Tif(x) =

frault,z, ) f(y)dy, t >0, z R, f e LF(R), 1 < p < oo;
(2) wit,z,y) = wlt,u,x), foreveryt =0, z,u € R;
(3) for every it =0, u(t, =, y) is continuous on R « R4;
(4) u(t,z,y) is strictly positive on (0, 00) x RY x RY;
(B) for allz,y R and g te R, 2 <t, the functional representation

(3.7) u(t — s, 7, y) = f e~ o V(Xr(w)dr dv%, (w),

holds, where the a-stable bridge measure yl ) is given by {2.7).



Assumption 4.1. Let Ay := inf Spec H, be an isolated eigenvalue. We assume that the corre-
sponding eigenfunction g such that |[eglle = 1, called ground stale, exists.

Definition 6.1 (Fractional P(¢)i-process). We call the process [ff:,uf]iEH_ obtained in Theorem
6.1 the fractional P(@);-process related to the Kato-decomposable potential V. We will also refer
to the measure p on (1, F) with

p(A) = [ Bue [La] B
l:l:l'

as the fructional P(g))-measure corresponding to the Kato decomposable potential V.

For simplicity, we drop “fractional” in the use of the above terminology. For our purposes below it
will be useful to see the measure p as the measure with respect to the stable bridge.

Lemma 6.4. We have for A € Fi. . s,t € R,

(6.11) pA)= | drgo(z) | duypoly) [ e LOVIX-)-Aoldry g =0 ()
' ' R R4 0 [=:t)

From Physica A 389, (2010), 4419, P. G. + V. S.:

The fractional analog of the generalized diffusion equation (2) reads: d,¥ = —HMIP = —A|A|*?¢ — Vv (x)¥. Looking
for its stationary solutions, we realize that if a square root of a positive invariant pdf & ~ p,:” is asymptotically to come

out, then the fractional Sturm-Liouville operator should be used to derive an explicit form of pij *fora given v,
In the opposite situation, when p, (x) is a priori prescribed, we can determine 'V through a compatibility condition:

A2 "

V= (7)

Px




More math lore: (Kaleta, Kulczycki, Potential Analysis, (2010))
—{—&)&fﬂ—q_in f{d_, for g > 0, ac (0,2)

Lemma 1. Let g€ LiS., q = 0. If q(x) — o as |z| — o then for allt > 0 operators T; are
compact.

Let us assume that for all ¢ > 0 operators T; are compact. The semigroup (7;) is called
intrinsically ultracontractive (abbreviated as IU) if for each t > 0 there is a constant C,; such
that

u(t,z,y) < Cpapr(@)pr(y), x,y <€ R?

g(z) __
log |x| —

and the semigroup (1;) is intrinsically ultracontractive.

Theorem 3. Let g € LS., ¢ = 0. If imy| e >0, then the operators Ty are compact

intrinsically ultracontractive, then for any € € (0, 1] we have lim|z— SuP”ﬁfg‘T; 90 _

Theorem 4. Let ¢ € LS., ¢ = 0 and q(x) — > as || — oc. If the semigroup (1) is
.

10



,Rough” guide II:

gradient perturbations

JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 41, NUMBER 10

Ornstein—Uhlenbeck—Cauchy process

OCTOBER 2000

It is worth noting that when the transition function is stochastically continuous (see Sec.
IV B), then the corresponding semigroup T, in Cy(R) defined by

@@= psma

is strongly continuous, and so its generator L is densely defined.
In such a case we can also define an adjoint semigroup 77 acting on the space of (probability)

densities L'(R, dx),

o0

fT?"ﬂ]EHFf_ piulv)p(v)dv.

Its generator we denote by L*.

L*=Ln_v{b }

Lu==|ﬁ1

(21)

(22)

(P.G. +R.0))

11



L=Ln+b?' L*=Ln_v(b') LD=|'F| b{U]:_hﬂ

transition probability function of the process u(f) satisfies the backward equation

d
%M:LDPI{HI-](U}+b(5}?upt(u|u}

and the forward equation (the Fokker—Planck equation analog)

0] _ b -10)() = Vb (w)p )]

Estimates of the Green function for the
fractional Laplacian perturbed by gradient

Krzyvsztof Bogdan, Tomasz Jakubowski *f
September 14, 2010

Following [12] we let @ £ (1, 2). We will consader dimension d € {2, 3,.. .},
a nonempty bounded open O set 1) C B9, its Green function Gp for A2,
and the Green function & p of the operator

L=A%?4b(z)-V,

where b is a function in Kato class K3 (for details see Section 2). Our
mterest in L 5 motivated by the development of the classical theory of the
Laplacian, non-symmetry of L (we have L* = A2 — b(r) - V — divh), the
fact that drift 1= quite a problematic addition to a jump type process, and
b a handfnl of techniomes which already exist. for A=




Commun. Math. Phys. 271, 179-198 (2007)

Estimates of Heat Kernel of Fractional Laplacian
Perturbed by Gradient Operators

Kreysziof Bogdan®, Tomasz Jakubowski*

Let 4 be a natural number, @ (1, 2), and let b = (bjjf}'zl : RY — R be a function in

a Kato class ﬁig_l defined below. Our aim 1s to construct and estimate the semigroup
with (weak) generator A*/2 f(x) + Zf;:l bj(x)d; f(x).

Theorem 1. There is a continuous transition density p'(t, x, v) such that

limf Ao — 7O g(x)dx :/ (ﬂ“ﬁf[,l:}+b(g:]-?f[x])g{x}dx, (1)
Rd R4

f—0+ t

where f, g € CP(RY), and P f (x) = Jpa Pt x, W) f (V) dy.

13



Point od departure: standard Brownian motion

(A(s)) = 0 (A(s)A(s")) = 2D (s — ')
D Z k5T /mp dp=Dlp—N (b p) Fokker-Planck eq.
Smoluchowski diffusion processes stationary asymptotic regime
o 4 oy b= | by=1u, = DVinp,.
mi3 m3 )

Stationary pdf (Gibbs-Boltzmann form)

polx) =exp ([F, = Viz)| /kpT) = exp[2d(x)]

i

o —exp® and b= 2DV

14



Becoming parabolic - no difference in the ultimate
dynamics and asymptotics of the inferred pdf !

plo, t) =0, (x. t)exp[d(x)]

Semigroup dynamics chtl, = DIAH, — VH, D = kT /mp
Ol = —-DAG+VE =0 1/ b2 Al
(r)==—=+Vb] |=pZ2_
Vi) =3 (ZD " ) e
6 = B(x) = exp d(z) !
Semigroup potential
1/2
H et ,ﬂqr'l
pdf dynamics ol t) =0z, )0, (2. 1) = /p(y.s.x.t]p(y.sjdy

F-P equation dp=Dop =N (b p)

15



Schrodinger semigroups

0,(t) = [exp(—tH)8,)(0) H—-DA+V

Note: suitable restrictons upon the semigroup potential need to be respected, to have a positive and
continuous semigroup kernel function

k(y. s, x.t) = (EK]II[ (t— s H] /E:Lp f ) }Lue i du] duls, y | t, 7]
plr.t) = /plfy.s.:.r. tp(y. s)dy pla, t) = Oz, t) exp[P(z)]
p ()
Ely. s, x.t) = ply, s, x. ﬂ ¥ = plu,s. oz, t) exp[®({y) — O{x)]
o ()

If pi(x) has the Gibbs form (actually, Gibbs-Boltzmann)

then ®(y) — $(x) = (1/2kpT)[V(z) — Viy)] b(x)=-VV(x)/(my)

16



V. Betz, J. Lorinczi, (2003); ground state processes, ,relative to Brownian motion

Given a El:lm'jd:inger Dperali?ur with Kato decomposable potential V' and zround
state W, we define a probability measure u on (£2, F) (ie., a stochastic process) by
putting

T r
iiA) = [ dx Yigix) [ dy ¥ip(¥) [ 14 (w)e o Ve g () (2.7)

—i M

L ]
e Vg =¥pand |[¥gllz =1

L

In fact, ;¢ is the measure of a reversible diffusion process with invariant measure
dv = d39 and stochastic generator H, acting in L*(v) as

1 . AL
H,f =—H(of)=—=Af — {—“ ?f} :
Vo - Vo R
Such processes are called P(¢);-processes in [21], although in probability theory they
are better known as Ite-diffusions. The transition probabilities for & are given by

BS () |y = X) =fﬂ*r{r-:r'}f{:r'ldut:-'}- (2.8)
where
K ix,¥)
XLV =———— 29
2 ) = g Y ) 22
is the transition density of u with respect to its invariant measure.
M. t) 1/2
Qiix,y) dvie KO o) gy emmmb ply.sxn)=kly.ea) g dals
Vol¥) 17




Note: fractional Kato class

DEFINITION 22 — A measurable function V - RY — R is said to be in the Kato class
[21] K(RY), if

sup f \Viy)dy <0 incased=1,

“Hle-vga)
and
Pﬂl sup f glx—w)|V(y)|dy=0 incased =2.
=B ey
Here,

. (—mx|] fd=2
8x) = { x|*¢  if d =3

V' is locally in Kato class, i.e. in K (RY), if V1, e K(RY) for cach compact set
K — k9. V is Kato decomposable [4] if

V=V+—V- with V- eK(RY), V*ekn(RY),

where V7 is the positive part and V™~ is the negative part of V.

18



Targeted stochasticity idea of |. Eliazar and J. Klafter,
J. Stat. Phys. 111, 739, (2003)

Lévy-Driven Langevin Systems: Targeted Stochasticity

X(dt)= — f(X(1)) dt + L(dt)

Dirift Diriver

1. Evolution: What is the Fokker—Planck equation governing the
evolution of the pdf of the system’s state?

2. Steady state: In steady state, what is the connection between the
system’s drift function f, driving noise, and stationary pdf?

3. Reverse engineering: Given a “target’” pdf p, can we “tailor design’
a drift function f so that the system’s stationary pdf would equal the desired
“target” pdf p?

Question: Do we have a guarantee that an invariant density may actually be
an asymptotic target ? Why not by means of semigroups ?

19




4. Boltzmann equilibria: It is well know that in Wiener-driven
Langevin dynamics, i.e., in the Gaussian case (1), the system admits a
Boltzmann equilibrium. Namely, the system’s stationary pdf equals

2
c exp{—; U(x)}, (3)

where ¢ 1s a normalizing constant, ¢ is the noise amplitude, and U 1s the
external potential. Hence, the following question arises naturally: Are
Boltzmann-type equilibria still attainable when the Lévy driver is non-
Gaussian?

As for the existence of Boltzmann-type equilibria—the following
proposition excludes their possibility in Levy driven Langevin systems:

Proposition 5. Boltzmann-type equilibria in the Langevin system
(2) are non-attainable when the Leévy driver is purely non-Gaussian.

20




Response to external potentials

L-EI].].EEVil]. SCSIario (Cf gradient perturbationS)

P =b(x)+ A t) = d,p= —V(b-p) — AJA]F?p

".I

Op = =V (b p) — AA[Mp b— 2DV

AP py () dar
- polx) Targeted stochasticity

hix) =

21



Lévy-Schrodinger semigroups

exp(—tH o)

H, = MNAPP 4V

i
Schrodinger’s boundary data problem dz * = ;"-|a—"'i|#“ 0, — Vi, .

9.0 = A A0 + Ve

(e, )8, t) = pla, t)

Bola, t) = plx,t) exp[—P(x)]

f-':-
\ | A2 .
V= 1,9 Targeted stochasticity

¥

exp[®(z)] = p" (x)

Transport equation for the pdf looks ugly

oo = B0 = —;\IEE}{I]{I‘:I|.’_"'i|#“'fi[l?:{pf—‘[}:|,ﬂ] —V.p

22



»1opologically-” induced jump-type processes and Lévy semigroups

dip = —AAM2p

5, l_(,u—i-l sin(wp/2) [ f(z)— flz)
A2V p) = i,
(A f)(x) = [ AT
dip(x f[ta; r|z) —w(z|z)plx)|v,(dz)
The jump rate is an even function, w(z|z) = w(z|z)

we replace the jump rate W(I|y} ~ 1/|I — ;l;"|1—|_'H

exp[®(z) — P(y)]
|z — y|

by the expression

wg(z|y) ~

w,:l;}.(.;r|3) :-—"{ T_{:qu,(j|j_f) ) E"H:-" = ?

23



Gp= "7
\_\

(1/N)O:p : —exp(P) |5|.tef2[exp(—¢1]p] 1+ pexp(—®)|A[*? exp(P)

Whatever potential ®(x) has been chosen (up to a nor-
malization factor), then formally p,(z) = exp(2®(x)) is

a stationaryv solution

—t o

if for a pre-determined p, = exp(2®), there exists the semigroup potential V

the dynamics belongs to the semigroup framework.

Rewriting the stationary pdf p. as p.(z) = (1/Z)exp(—V.(x)/ksT)

(note the Gibbs-Boltzmann form of the pdf!) we get:

Byp = —exp(—rV, /2) |A|*2 exp(KV, [2)p + pexp(rV, /2)|A*/? exp(—KV, /2), & = 1/kgT.

The transport equation has the previous, semigroup-driven form !

Oyp = HoLH* = —,:"l.le?{pflljl|ﬂ|ﬁ*“ﬂ[l?:{plf—‘[}:|,ﬂ] —V.p

Quiery: ,superdiffusion” ? 24



Targeted stochasticity for Cauchy driver

_ o 1 (z) — Jlz)
(V| F)fz) = —:ffl M) .

. ;]"|'2

=]

Ornstein-Uhlenbeck-Cauchy process

; & A
dp=—=AlV|p+ V](rx)p () = _ o=
| [ ] m(o? + x?) ¥
Invariant density vs semigroup potential
|ﬂ|#‘;‘.'g Ir-'__;|1 2 1 1 1 1 1
1‘1 = ;". ; ! 1 I T e
31"'.2 T — -~ I| | - =]
' N S Y[ - g
— N KV
y A 2 o Vv a J} = M. gel0.5
| r) == |——= — 111 — 5" s - -—— -1
T — 2408 .«
i ! il .,Ir,.-"{,', i ® o i\. Ill'/ﬂ ——-ee
_\3_4.5_ - Illlull] e
X
E:-:TE-I-.T‘E S e E T T

45 40 5 © & 10 15

(V. Stephanovich —coll.) 25



Targeted stochasticity

—m— Langevin
—B— Topological

- B———1

-—
-
l; "
y

0.8 /

06 /

0.4
l.-='=._"
oo
0.0 — T —TTT T —TT T T T T

0.0 0.1 1 10 100

HW
—

FIG. 1: Temporal behavior of the half-maximum width (HW):
for the OUC process in Langevin-driven and semigroup-driven
(topological) processes. Motions begin from common initial
data p(xz,t = 0) = (z) and end up at a common pdf (20) for
o=1.

in the

20

p(x)

time domain

Langevin - type process

FIG. 2: Time evolution of Langevin-driven pdf pr(z,t) be-
ginning from the initial data pr(z,t = 0) = §(z + 1) and
ending at the pdf (20) (shown as "asymptote” in the figure)
for ¢ = 1. Figures near curves correspond to t values.

Dynamics in the OUC process with:

o
(o2 + x2)

p«(T) =

26



Targeted stochasticity in the time domain (confined noise)

Invariant density

Langevin drift

Semigroup potential  P(z). — )\

Langevin - type process

} 2 1
ps(z) = — .
m (14 x2)?
4 4
1=0.01
3 3
Topological process =0.1
- 7 —_— 0
X X
a a
=1
' t=10 and p, "
0= T T T T T T — 0
15 10 05 00 0.5 10 15 4.5
X
b

2 —1
2 +1
1.04 - —g—g 9
- o A
,
{]-B' II/ ’j
Langevin-type i ? Topological
A 0.6 |
g g
™ II,l ’.
a'f 0.4 x';f’
) e
0.2 (jff
AP
] ]
4o
ool et
0.01 0.1 1 10
t
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P1Lang(x)

p1ﬁam(x)

359 ——t=0.01 f

] A
3.0 0.1 |I {
| —1 | {

25{ ——t=8 and p,*(x) I| l

Diffusive scenario !

351 P D =1;b=bssr=Vnp,

0 ::n Inll

25| ——1=15 and p. (%) ,'I \ FIG. 2: Time evolution of pdf's p(z,t) for the Cauchy-
: 1 T\ Langevin dynamics (panel (a)), Cauchy-semigroup-induced

207 Illl lj{ evolution (panel (b)) and the Wiener-Langevin process (panel

1.5- 1

(¢)). The common target pdf is the Cauchy density, while the
initial £ = 0 pdf is set to be a Gaussian with height 25 and
half-width ~ 1072, The first depicted stage of evolution corre-
sponds to £ = 0.01. The time rate hierarchy seems to be set:
diffusion being fastest, next Lévy-Langevin and semigroup-
driven evolutions being slower than previous two. However

X the outcome 1s not universal, as will show our further discus-
siomn.

,superdiffusion” ? Not quite... 28



Cauchy semigroup: false Gibbs- Boltzmann asymptotics

dip = — exp(—KV. /2) |A[F/2 exp(V. /2)p + pexp(kV./2)| A[*/2 exp(—kV. /2)

pa (X)) = exp(@(x)) = (1/+/Z) exp(—V.(x)/2kgT) k = 1/kgT

We scale away dimensional units and consider typical Gibbs-Boltzmann
forms of ».“x : with Vi) =®(z)=2"-22"+1 and |$ = V,(2) = 22

Hyper-confinement

Potentials

Compare V. with V 45 4o <s x

FIG. 4: The coordinate dependence of the semigroup po-
tential V(x) (curves 1 and 2), corresponding to Vi(x) =
x* —2x? + 1 (curve 3) and Vi(x) = x? (curve 4), respectively.
Curves 3 and 4 are shown for a comparison with, strikingly
similar in shape, semigroup potential curves 1 and 2 29



Direct semigroup inference:

k= (p—

7)/¢

ngg = AV|+

Cauchy oscillator

(5-%)

direct reconstruction route:

k2 12 _ 1/2
(5%~ Vo) pt/? = =AIVI pt
f (p) _the FDuuer transform of f = p
K - _ -
_Eﬁpf*‘ "r’|P|f =W f

U(k) = f(p) o=/

d*y(k)
dk?

= |k (k)

1;‘2( )

[}

¢ = (k/27)'/3

30



A unique normalized ground state function of

is composed of two Airy pieces

d*(k)
dk>

that are glued together at the first zero yg of the Airy

function derivative:

(k) = Ag {

14‘“[1:'! wniF]

1.4 -
1-2—_
1_D—-
D_B—_
D.E—_
D_d—-

0.2 -

0.0

Ai(—yo+ k), k>0
Ai(—yo — k), k <0,

= [kl 3 (k)

\ -1
Ag = [Ai(—yo)\/Qyo] . yo ~ 101879297

— v, (p) - momentum space
wﬂﬂx}- coordinate space

31



Normalized pdfs

0.6

0.4

0.0

p.(x)
- = =Gaussian

p.(x)
- — -(Gaussian

Mormalized pdfs

FIG. 7: Normalized invariant pdf (30) (full line) for the
quadratic semigroup potential. The Gaussian function, cen-
tered at + = 0 and with the same variance ¢? = 0.339598
is shown for comparison. Panel (a) shows functions in lin-

ear scale, while panel (b) shows them in logarithmic scale to
better visualize their different behavior.

. A <
do(x) = = / Ai(t) cos z(t + yo)dt = pi/*(z)

— Yo

32



Reverse engineering for the Cauchy oscillator
ground state pdf

For a given p, the definition of a drift function b(x)
(we put either A =1 or define b — b/ ) is:

b(z) = — 1 /[|‘F|p*(ﬂj)]dﬂ:‘- =

/dl,/ mw @),
TP« (2

Inserting p.(x), Eq. (30), we get

fm Ai(t)sinz(t + yo)dt
f—yn i(t) cosz(t + yo)dt

Lévy- Langevin drift  b(x) =

33



Drift b(x); Potential V(x)

-10 ,

FIG. 8: Langevin - type drift b(z) (curve 1) and its (force)
potential V(z) (curve 2), that give rise to an invariant density

(30).
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Confinement hierarchy - case study

. I'(cx) 1 1
M) = — pEpEa Doy a>1/2
Vo —1/2)) (1+ x=)
Semigroup reconstruction Langevin drift reconstruction
A2 pi ) = =ty [ (V@)
5 - ' ¥ n1r)=— — LW o L) ale
1/ = _:I"T Py T )
2%
- Lf2 ;
¥ = —A|A|M W — Vi Sip = —V(b-p) = NAFp
pla,t) = Wiz, t)p. " (z) dhp, =0==N(bp,) —7|V|p.

That was about jump-type processes.
What about diffusion-type alternative, with the Gibbs-Boltzmann
ansatz, like e.g.

p«(2) = Cexp(—=AV(2)). and b~ NV

Trial potential: V(x) ~ In(1+ z%)
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Min/max information entropy principle

To have a better insight into the extremum principles at work, let us recall the
standard maximum (mnformation/Shannon) entropy principle: consider [a, b € R,

assume that everything you know about the a priornn unknown probability measure
are (possibly) its moments

b
f r*p(x)dr = m, (51)

with k=0.1.....M and mg =1 — the normahzation condition.
We look for densities that maximize the Shannon entropy of a continuous
probability distribution (now we encounter a functional of a concave function):

h
Slel =~ [ pinpaa (52)

under the constraint of M fixed moments [El1 l'?’:-
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The extremmum of a functional

. i M i
5=—L plupd:ﬂ+§k;;([ﬂ j:kﬁdr—m#) (53)

(a concavity property of & needs to be remembered) sets the functional form of p

which maximizes the E!I]tI'-D-Pj.-'

o) l“__‘e:cp( Z,h;;j: ) (54)

where C' = exp(—Ap — 1) 15 the normalization constant and Ag's are fixed by wden-

tities

b b
f exp | — Z Ak ) dr = my. (55)

@ a
If there is a unique solution 1n terms of Ay, ..., Ay, we say that an entropy maxi-

mizing (under the mj “circumstances” ) density does exast.,
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For reference, let us reproduce some pieces of a standard wisdom:

(1) If @ and b are fimte, there exists a umque maximum entropy density.

(ii) In R, e.g. [0, +0c), a maximizing density exists if m] < my < 2m?.

Notes: if there 15 no constramnt, there 15 no maximizing density; if only
the mean m; = 1/ 15 mven, we get the exponential one: p.(r) = aexp(—or);
for the Gaussian on RY, like eg. p(r) = (2//T)exp(—r?) , we have S(p) =
(lnw + 1)/2, which 15 a maximum of the Shannon entropy under the moment
constraints my = {r} = 1//7 and ma = (r?} = 1/2; for another Gaussian on
R*, Pal(s) = (2/7) exp(—s®/7), we have m; = (5} = 1, ma = m/2 and S(p) =
[In(=2/4) + 1] /2.

(m) In i, with no moment prescribed. or given the mean only, there 1= no
maxiumum entropy density.

Notes: if my and ma are given, the maximum entropy distribution 1= the
normal (Gaussian) one, with the variance o = ma — mi, Le. p(z) = exp(—(z —

m1)* /202) /(v/277) and the Shannon entropy value is &(p) = In(2wes?)/2. That
1s to be compared with the previous outecome, Eq. (28), for the Gaussian on BT,
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Entropy extremum principle

Fix a priori the value of

U — / In(1+2°) p(x)dz =¢
e (x carries no dimension, T = z /o )

Extremize an obvious Helmholtz free energy
analog (F=U —T5)
F =a(ln(l+2%) —S(p)

S(p) = —(Inp), while o is a Lagrange multi-
plier to be explicitly inferred in the variational
procedure. ¢ <+ a

5F(p)/p =0

l

pa(z) = (1/Zs) (1 +27)7°

provided the normalization factor 2, =
ff;(l + 22)7* dx exists.
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To identify the value of the Lagrange multi-
plier ar, we need

_ ['(a) /C’C In(1 + z?)
Villa =1/2) J_ (1+22)°

U, dx.

With an explicit expression for Cauchy fam-
ily pdfs in hands, we readily evaluate Shannon
entropy

S, = —/ po(z)In po(x)de =InZ, + ald,.

o0

and Helmholtz free energy analog

Fo=aold, —S,=—-InZ,

In view of the divergence of Z,, both the
Shannon entropy and the Helmholtz free energy
(likewise U, ) cease to exist at a = 1/2.
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M1 A Given the internal energy value, we can
b Jra read out the corresponding Lagrange
1.0+4+ o . . .
N N multiplier value from the figure
E 1].5_“_ ‘!I e Ix\

+ s R 10.0 4
0.4
> _________._:.____;._:-’:? e 7 -:.‘.:;:‘.;._1:1:"‘ ——
L0 e

=20 <15 10 -5 0.0 0.5 1.0 1.5 20

X

<In(1+x%)>

Wl p o)

FIG. 2: U, (curve 1) and its asymptotic expansion at large
‘curve 2).

FIG. 1: Logarithmic potential In(1 + %) against pa(z), with
1/2 < o < 1 and for some integer o.

Note: the number of moments
grows from none at all to infinity
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Thermalization argument (limitations upon states of thermal equilibrium)

Orp = DAp =V [=pVV(z)/my]

D = kgT /my O,p = V[pV¥]/(m7)
Consider:
b=V 4+ kgTlhp (21)

whose mean value is indeed the Helmholtz free energy of
random motion

F=(l)=U-TS§. (22)

Here the (Gibbs) entropy reads S = kg&, while an inter-
nal energy is I’ = (V). In view of assumed boundary re-
strictions at spatial infinities, we have F' = —(m~y) (v?) <
0, where v = -V /(m~). Hence, F' decreases as a func-
tion of time towards its minimum F,, or remains con-
stant.

42



At equilibrium:

U, =V +kgTlhp, = (U.) = —kgTIhZ = F,

To be compared with the previous (note dimensional issues we bypass !)

Fo=odd,— S, =—-InZz,

Once we choose V(z) = eln(1 + 2?)

and

(at fixed energy scale €p ) a =

€o/(ksT)

a — oo corresponds to T'— 0
Since 1/2 < «, the temperature scale, within
which our system may at all be set at thermal
equilibrium, is bounded: 0 < kgT' < 2e¢y.

T~

['(ex) 1

L |.]'.| =

V(o= 1/2)) (14 z2)°

a = 1 ie. kgl = ¢ corresponds to Cauchy

density.
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FIG. 6: Time evolution of pdf’s p(z,t) for Smoluchowski pro-
cesses in logarithmic potential In(1 + z%). The initial (£ = 0)
pdf is set to be a Gaussian with height 25 and half-width
~ 10~%. The first depicted stage of evolution corresponds to

t = 0.01. Target pdfs are the members of Cauchy family for
a = 1,2, 3 respectively.
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Transient dynamics in Brownian motion

| |
—n— Sagond moment <>
i —m— Half wadth, ax
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i t =042
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Exponential families of pdfs

0p = Ap—V(bp)
(wehave set D=1 in &p=DAp—Vib-p]l )

Pl:l{x.:l ) F'*'[-‘f]'

p«(x) = explln p.(z)] = A exp(—V(x))

I
Pa = Aq ﬂ“f*:]j{—ﬂ" 1;{.1‘))

v

€o/(ksT)

Trial ansatz: (i) V(z) = a?

(ii) V(z) =mn(l +z?%)
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Exponential Gauss family

| 1 |
p+(T) = \/; exp(—z”) = Aexp[-V(z)]

Vi(z) = 2”

l

PalT) = \/%DKP(_&"TQ) 0 — ,Eu‘/(.kBT)

bo = bﬂc:{hff =Vinp, = _&VLF(I} = —2ax
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pe(x) =

Exponential Cauchy family

1 1
71+ 22

V(z) =In(1+ 2%

A,
Pa = (1 I EEE}Q — D}{p(hl :Ot}}
a = e/(ksT)

l

= exp(— In7) exp[—In(1 + 2%)] = A exp[-V (z)]

Po = Aq C‘Xp[_& vr[i:r)]

Inp, =InA, — a In(1 + z2)

ba = bﬂ.\d.fff =VIn P = —&'VLI(;IT\} = —

2
1+ x2
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Exponential familiy for any p.(x)

Select p«(x) for which an exponential family is to come out

p«(z) = exp[ln ps(z)] = A exp(—V (2))
U

Pa = Aq C};p[_& 1;(3:)) bo = bagir = Vinp,

Fix a priori the value ot

Extremize with respect to p

F =alV) = S(p)

S(p) = —np)
a is a Lagrange multiplier whose concrete value (to be inferred) de-
pends on (: ( +— a.
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Cauchy vs Gauss:

¥ interpolation

| |
2y —ox . ¥ 2 1
r) = — 1+.f Gig) = — e T = g o
.IGCEI:: } Z& { J]'I PD_’( } - ZE
(']m[ @ 3 } (- az®+ =y )
Peal T E_S‘//—ﬁ - | XD — kI ﬁ? ‘e
0o " I ' I I I
.3 - 1 -
a > o sets
a fairly good approximation
5

Fig. 3: (Color online) S, for Cauchy family (curve 1) and its asymptotic ex-
pansion at large o (curve 2). 8% for Gaussian family is also shown (curve 3).
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Link with Tsallis entropies and pdfs

k
Sqlpl = q_al (1 —fd(xfﬂ}[ﬂp[x)l“)

(x7)g = f dix/o)’ [op(x)]f = o,

T

l [ﬂ(q — 1)]“’2 rqjg-1mn
Eq =

1 |
pa¥) = [1—p(1 - gx ] 10 I'((3—q)/2(q — 1))
0

we need 1 < g < 3 to secure the convergence of the normalization integral

Vix) = In[1+ f(g — 1x?]
Blg—1)
T 2 r 2
redefine the constants involved B = ;_D‘ q:1+£ —) V(z) =c"In[l+ (x/d)7]
. o o

]
Pglx) = Z_q 114+ (x/o }‘j']"'q’”l B plays the role of 1/kgT
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What was all that about ?

Heavy-tailed targets and (ab)normal asymptotics in diffusive motion

Piotr Garbaczewskl, Viadimir Stephanovich and Daruse Kedsierska
Imatitute of Physics, Universily of Opole, {5052 Opoles, Poland

We show that under suitable confinement conditions, the ordinary Fokker-Planck equation may
generate non-Gaussian heavy-talled probability density functions (pdis) (like e.g. Cawchy or more
peneral Lévy stable distributions) in its long time asymptotics. In fact, all heavy-tailed pdfs known in
the literature can be obtained this way. For the underlying diffusion-type processes, our main focus
= on their transient regimes and specifleally the crossover features, when initially infinite numbser
of the pdf moments drops down to a few or none at all. The time-dependence of the variance (if
in existence), ~ €7 with 0 < 7 < 2, in principle may be interpreted as a signature of sub-, normal
or super-diffusive behavior under confilning conditions; the exponent 7 = generically well defined in
substantial periods of time. However, there is no indication of any universal time rate hierarchy,
due to a proper choice of the driver and for external potential

Physica A (2010), doi:10.1016/].physa 2010.11.041
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